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Agenda

e Foundations of Causal Inference

e Quasi-experimental designs and methods
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Foundations of Causal Inference
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Foundations: agenda

e Motivation
e Counterfactuals and causal estimands

e Randomized Trials
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EVERY SINGLE PERSON
WHO CONFUSES
CORRELATION AND oy
CAUSATION ENDS UP 355/

Motivation

timoelliott.com
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Motivation and Concepts

o Cautionary tales
o Counterfactuals
o Causal Estimands
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Why do we care about causal
inference”?
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Social Policy questions are
CAUSAL questions!
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Social Policy questions.....

Does Abstinence-only Education

Work?
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Does Abstinence-only Education

s G Gay Marriage Solve Our Adoption Problem?
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Does Abstinence-only Education

s G Gay Marriage Solve Our Adoption Problem?

Does exposing preschoolers to
music make them smarter?
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Social Policy questions.....

Does Abstinence-only Education

s G Gay Marriage Solve Our Adoption Problem?

Does exposing preschoolers to

music make them smarter? Did the introduction of CitiBike

make New Yorkers healthier?
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Social Policy questions.....

Does Abstinence-only Education

s G Gay Marriage Solve Our Adoption Problem?

Does exposing preschoolers to
music make them smarter?

reduce crime? money on your family's health-care costs?

Did the introduction of CitiBike
make New Yorkers healthier?

Would a '‘Medicare for All' plan help you save
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Social Policy questions.....

Does Abstinence-only Education

S0 Dan iay Marriage Solve Our Adoption Problem?

Does exposing preschoolers to
music make them smarter?

reduce crime? money on your family's health-care costs?

Did the introduction of CitiBike
make New Yorkers healthier?

Would a ‘Medicare for All’' plan help you save

What Happens When the Poor Receive a

Stipend?
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How likely are we to get the wrong
answers to these questions?



eeeeeeeeeeeeeeeeeeee
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

How likely are we to get the wrong
answers to these questions?

What is the cost if we do?
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Causal Inference is Important!

Failing to carefully think through causal issues can
cost time, money, lives......
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Cautionary Tales

Salk Vaccine
Internet ads
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Polio and the Salk VVaccine
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Polio characterized by progressive muscle and joint weakness and
pain, sometimes leading to paralysis.

First major polio epidemic in the United States in 19

people suffered paralysis and 6,000 died. "
.

By 1950s Polio was respon3|ble for 6% of

year olds.

While the disease wgls) fai

Patient in iron lung, Rhode Island polio epidemic, 1960
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"By the mid-20th century, the poliovirus could be found
all over the world and killed or paralysed over half a
million people every year. With no cure, and epidemics
on the rise, there was an urgent need for a vaccine."

www.who.int/news-room/spotlight/history-of-vaccination/history-of-polio-vaccination
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Could the Salk vaccine eradicate the disease?

e 1954: US Public Health Service wants to investigate
the effectiveness of a vaccine invented by Salk
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Could the Salk vaccine eradicate the disease?

e 1954: US Public Health Service wants to investigate
the effectiveness of a vaccine invented by Salk

e Disappointingly, observational evidence comparing
those vaccinated with those not vaccinated did not
demonstrate convincing success!



Presentation from the CDUHR Methods Core 3/26/2024.
DO NOT DISTRIBUTE OR POST TO OTHER WEBSITES WITHOUT PERMISSION FROM DR. JENNIFER HILL.

Could the Salk vaccine eradicate the disease?

e 1954: US Public Health Service wants to investigate
the effectiveness of a vaccine invented by Salk

e Disappointingly, observational evidence comparing
those vaccinated with those not vaccinated did not
demonstrate convincing success!

e Arandomized experiment was then conducted that
suggested the vaccine was effective!
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Why was the observational
evidence misleading?
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Which type of kid had more access to the vaccine?
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Which type of kid had more access to the vaccine?
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Which type of kid had more resistance to the virus?
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Which type of kid had more resistance to the virus?




Presentation from the CDUHR Methods Core 3/26/2024.
DO NOT DISTRIBUTE OR POST TO OTHER WEBSITES WITHOUT PERMISSION FROM DR. JENNIFER HILL.

In the absence of the vaccine who would
have been more likely to survive?
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In the absence of the vaccine who would
have been more likely to survive?
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The observational comparison wasn't fair!

Couldn’t tell if differences in

outcomes had to do with the
vaccine or underlying health

differences
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The randomized comparison was fair!
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The randomized comparison was fair!

Groups were balanced
(similar) both on
observed and
unobserved
characteristics.

—— Differences in outcomes
could be attributed to
the vaccine.
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Polio cases and deaths in the US since 1943

The rapid distribution of a new and effective polio vaccine starting in 1955 led to the disease's
elimination from the United States in 1979.

Lives saved
because of
evidence
from a
randomized
experiment!

— Cases Deaths
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After that we had learned our lesson
about the importance of thinking
carefully about causality, right....?
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60 years later...
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We have BIG DATA
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We have BIG DATA

We have fancy machine learning
methods to analyze it
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Do big data and machine learning
make it easier or harder to understand
causal relationships?
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WIRED MAGAZINE: 16.07

Science : Discoveries

The End of Theory: The Data Deluge Makes the Scientific
Method Obsolete

By Chris Anderson B o6.23.08

IMustration: Marian Banijes
The Petabyie Age:

There 1s now a better way. Petabytes allow us to say:

"Correlation is enough.”
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1'\ IRED MAGAZINE: 16.07

ience : Discoveries

The End of Theory: The Data Deluge Makes the Scientific

™ "Fﬁgﬁata Blg Hubris

IMlustration: Marian Banties
The Petabvie Age:

There 1s now a better way. Petabytes allow us to say:

"Correlation is enough.”
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sigh...



Presentation from the CDUHR Methods Core 3/26/2024.
DO NOT DISTRIBUTE OR POST TO OTHER WEBSITES WITHOUT PERMISSION FROM DR. JENNIFER HILL.

Internet Ads
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S$31.7 billion

was spent on internet
advertising in the US
in 2011

T Rl 7| UnieA JMWWI\

Sa ) TR b I
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Do click throughs — $$% ?
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« Common wisdom:
* internet advertising is highly effective
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Do click throughs — $$$ ?

« Common wisdom:
* internet advertising is highly effective

« Data:
* did you click on ad?
* did you buy the product?
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Do click throughs — $$$ ?

« Common wisdom:
* internet advertising is highly effective

« Data:
* did you click on ad?
* did you buy the product?

 Methods:

* machine learning algorithms that predict purchases
from clicks (i.e. big data + machine learning)
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Marketers wants you to believe...

-01
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But what if the truth is....?
-01
AD

) B

y
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Causal
question:

What if shoppers [ISENCSH mumlrnired
would have 1007 OF SPENDING
bought the

product anyway”?

® marketoonist.com
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Ebay performed a quasi experimental study

Compared
click through traffic with ads on and off on one
search engine

e click through traffic with no ads on other engines

Blake, T., Nosko, C., and S. Tadelis (2013) “Consumer Heterogeneity and Paid Search
Effectiveness: A Large Scale Field Experiment”
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S$152 billion

spent on internet
advertising in the US
in 2020
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spent on internet
advertising worldwide
in 2020
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We ignore causal inference at our peril!

Failing to carefully think through causal issues can
cost time, money, lives......
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SO.......
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What's going on: Selection Bias!

Selection bias

e when different types of observations are selected
or self-selected into different treatments

and

e these differences across observations are also
predictive of outcomes.
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Is there a solution?
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Is there a solution?

Maybe.......22227
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Is there a solution?
Maybe.......??7?7?7?
Design
Modeling

Transparency about assumptions
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First, let's formalize the problem......
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Causal Inference
is hard
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Didn't get the Got the
lreatment lreatment

Causal
inference is
about making
fair
comparisons
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Got the
lreatment
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Didn't get the Got the
lreatment lreatment

Or more . @t@;‘
insidiously, the LD e
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LOOK the same
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Got the
lreatment

But in fact they
are different in
ways we
haven't
measured
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Let's make this idea of fair
comparisons more concrete!
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Counterfactuals
and
Causal Estimands
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How do we define a causal effect?
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To understand causal inference....
we need to understand....
Counterfactuals
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Why do we need counterfactuals?
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Why do we need counterfactuals?

Consider the following....
® Jois struggling in math
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Why do we need counterfactuals?

Consider the following....
® Jois struggling in math
® Jo uses an online tool for extra help with the material
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Why do we need counterfactuals?

Consider the following....

® Jois struggling in math

® Jo uses an online tool for extra help with the material
® Jo scores poorly on the subsequent math test
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Why do we need counterfactuals?

Consider the following....
® Jois struggling in math
® Jo uses an online tool for extra help with the material

® Jo scores poorly on the subsequent math test
Did the online tool cause the low test score?
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Why do we need counterfactuals?

Consider the following....
® Jois struggling in math
® Jo uses an online tool for extra help with the material

® Jo scores poorly on the subsequent math test
Did the online tool cause the low test score?

Q: What Would have happened # Jo had not used the tool?
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Jo after classroom Jo after classroom
instruction alone instruction + tool
Y(O) Y(1)

Causal inference
requires a comparison
of counterfactual
states

Effect of the online tool for Jo: Y(1)- Y(0O)
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But we can't see BOTH potential
outcomes at the same time!
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We have a3 missifg

? Jo after classroom
instruction + tool

Y(1)

Causal inference
requires a comparison
of counterfactual
states

Effect of the online tool for Jo: Y(1)- Y(0O)
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We have a3 missifg

Jo after classroom

Clata FFOblcm ] instruction alone
Y(0)

Causal inference
requires a comparison
of counterfactual
states

Effect of the online tool for Jo: Y(1)- Y(0O)
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The Estimand

The quantity we are trying to estimate

91
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The estimand: What we are trying to estimate?

The estimand is the quantity we are trying to estimate.
We often focus on estimating average causal effects.

We have defined an individual level treatment effect as
the difference between two potential outcomes

Yi(l) - Yi(O)
The average treatment effect (ATE) can be defined as
Avg[Y(1)-Y(0)]
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ARE. YOU PLAYING WORDLE?

NG I'M IN THE
CONTROL GROUR

)
Randomized
Experiments

MY NEW ALL-PURPOSE EXCUSE FOR
WHEN I™ NOT DOING SOMETHING
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Randomized experiments

Definition

Intuition

Assumptions
Estimation

IHDP example
Compliance and ethics

O O O O O O
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Randomized experiments: the gold standard

« Randomized experiments: “gold standard” for answering
causal questions

* They create two (or more) groups that are virtually
iIdentical to each other on average

 If each group receives a different treatment, we can
safely attribute any difference in outcomes to the
different treatments
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Randomized experiments: creating balance

O 06 ¢ o

N, 8

Assigned
e to receive
treatment

o« &
o

Assigned : 1
to receive
control
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Randomized experiments: balance on observed
AND unobserved features of the observations

O 06 ¢ o

Assigned
to receive

Assigned Q
treatment

to receive j $

control o &
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Receives
Receives Random assignment treatment

s/

placebo into
treatment groups

K 3
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Randomized experiments: defining characteristics

e Each unit assigned to treatment using a known
probabillistic rule

e Each unit has nonzero probability of being allocated to
each treatment

e Let's focus on two types of randomized experiments
o completely randomized experiment
o randomized block experiment
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Completely randomized experiment: properties
(assumptions that are satisfied by design)

Since treatments are allocated by a known probabilistic
mechanism we know that

Pr(Z | Y(0), Y(1)) = Pr(2)
Equivalently: Z L Y(0), Y(1)
This is referred to under many names including:

o no hidden bias
o ignorability
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Example: Infant Health & Development Program

e (Observations on ~1000 children; random assignment:
o Vs were randomly assigned to participate in IHDP (Z=1)
o % assigned to receive no intervention (Z=0)

e Covariates (X) were recorded. For example,
o Age
o Mom’s education level (high school graduate or not)

e |Q score of each child (Y) a year after program ends
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. ),.=23.83
(Hypothetical) observed data from IHDP

Avg(age),_,=25.17

Person | Treat | Educ. Age Y(0) | Y(1) Y
1 1 1 26 ? 114 114
2 1 1 21 ? 112 112
3 1 1 30 ? 116 116
4 1 1 19 ? 112 112
9 1 0 49) ? 110 110
6 1 0 22 ? 108 108
/ 0 1 26 110 ? 110
8 0 1 21 108 ? 108
9 0 1 42 116 ? 116
10 0 1 15 102 ? 102
11 0 0 26 106 ? 106
12 0 0 21 104 ? 114

Information are we missing if we want to calculate ATE 103
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Completely randomized experiment: implications

Consider the average treatment effect,
Avg[Y(1)-Y(0)] =Avg[Y(1)] - Avg[Y(0)]?

How do we estimate Avg[Y(1)] even though
we are missing half of the values?

How do we estimate Avg[ Y (0)] even though
we are missing half of the values?
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Recall our IHDP example

Person | Treat | Y(0) Y(1) Y
1 114
112
116
112
110
108
110
108
116
102
106
104

O N|O| 1| | WIDN]|—~
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Recall our IHDP example
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Person | Treat | Y(0) Y(1) Y
1 1 110 114
2 1 108 112
3 1 112 116
4 1 108 112
3) 1 106 110
6 1 104 108
14 0 110 110
8 0 108 108
9 0 116 116
10 0 102 102
11 0 106 106
12 0 104 104

ATE = Avg[Y(1) - Y(0)]
- Avg[Y(0)]

If we want to estimate

We can get an unbiased
estimate by just using the
treated sample!

The randomized
experiment ensured that
they are a random
sample of the full sample.
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Person | Treat | Y(0) Y(1) Y
1 1 114 114
2 1 112 112
3 1 116 116
4 1 112 112
3) 1 110 110
6 1 108 108
14 0 114 110
8 0 112 108
9 0 120 116
10 0 106 102
11 0 110 106
12 0 108 104

ATE = Avg[Y(1) - Y(0)]
= Avg[Y(1)] -

If we want to estimate

We can get an unbiased
estimate by just using the
treated sample!

The randomized
experiment ensured that
they are a random
sample of the full sample.
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Completely randomized experiment: implications

Consider the average treatment effect,
Avg[Y(1)-Y(0)] = Avg[Y(1)] - Avg[Y(0)]?

We can estimate Avg[Y(1)] using the mean of the
Y's in the treatment group.

We can estimate Avg[Y(0)] using the mean of the
Y's in the control group.
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Completely randomized experiment: estimation

Consider the average treatment effect,
Avg[Y(1)-Y(0)] =Avg[Y(1)] - Avg[Y(0)]?

We can estimate using the mean of the
Y's in the treatment group, V.. Because those units
are a random sample from the full sample.

We can estimate Avg|Y(0)] using the mean of the
Y's in the control group, YO. Because those units are a
random sample from the full sample.

110
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Estimating treatment effects, options

* Difference in means: ¥ - Y,
* Regression with:

— an indicator for treatment (but nothing else)

— an indicator for treatment + pre-treatment variables

—Post-treatmentvariables
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Randomized experiment

0
|
o L
< L e ]

Graphs by treat
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Randomized experiment
regression modeling for more precision

E[Y( .l )ipretest |

red for treatment observations
and response surface

blue for control observations
and response surface

120 140
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Results: IHDP
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What would we expect the distribution of any
given outcome variable to look like for the
treatment group relative to the control group?

Did randomization work?
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Variables FU IHDP Variables FU IHDP
Mother Child
Age 24.7  Birth weight
Black 0.55 Head circ (birth)
Hispanic 0.09 Sex
White 0.36  Weeks pre-term
Married (birth) 0.43  Birth order
< high school 0.43  Neonatal health
High school 0.28 Twin
Some college 0.17
College grad 0.13 Father
Cigarettes (preg) 0.35 Black

Alcohol (preg) 0.11 Hispanic
Drugs (preg) 0.04 White
Worked (preg) 0.60

Prenatal care 0.94
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Balance across treatment and control groups

Birthweight in treatment and follow-up-only

groups: histo grams
control

treated

.001

Densit
2.0e-04 4 0e-04 6.3e-04 8.0e-04

1000 1500 2000
bw

Density | | Density
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Estimated impact: age 3 test scores

e Regress:

Y ~ treat + covariates

e Estimated impact: +6.4 (se = 1.2)
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Increase precision through design?
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Randomized Block Experiment



Presentation from the CDUHR Methods Core 3/26/2024.
DO NOT DISTRIBUTE OR POST TO OTHER WEBSITES WITHOUT PERMISSION FROM DR. JENNIFER HILL.

Randomized Block Experiments

e Divide data set into “blocks” (groups, strata...)
— Based on age, education, etc.

e Randomize separately within each group
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Randomized Block Experiments

By grouping the subjects, one can ensure that subjects are
“balanced” across groups with respect to these variables.
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Randomized Block Experiments

By grouping the subjects, one can ensure that subjects are
“balanced” across groups with respect to these variables.

Particularly useful when ....

e sample size is small

e blocks are predictive of outcomes

e it's important to give greater access to some groups
e treatment effects are expected to vary across groups
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Randomized Experiment without Blocking

test score

I
|
|
I
|
|
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| I
control treatment
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Randomized Experiment without Blocking

Look at all the unexplained variance -- that's what is feeding the
standard error of our estimate!

test score

I
I
I
I
I
I
1
|

|
control treatment
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Randomized Block Experiments

See how the unexplained variance has been drastically reduced!

B Control
B Treated

©
e
O
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Compare experiments with and without blocking

B Control
B Treated

o ()
el —
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O [$]
] 1]
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0 1]
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control treafmenl 3
blocks
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Randomized Block Experiment: Assumptions

Formally we say that within any block the distribution of
potential outcomes is the same across treatment groups,

Z LY(0),Y(1)|W

where W denotes blocks.

It is not necessarily true that: Z L Y(0), Y(1)



Presentation from the CDUHR Methods Core 3/26/2024.
DO NOT DISTRIBUTE OR POST TO OTHER WEBSITES WITHOUT PERMISSION FROM DR. JENNIFER HILL.

Randomized Block Experiment: Assumptions

Colloquially we say that within any block the groups are
balanced (on average) in all pre-treatment variables.

There should be no systematic differences between
groups.

Terms that capture this idea: ignorability, no hidden bias,

all confounders measured, selection on observables,
exchangeability. These are more often used with
observational studies.
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Estimation

To estimate the average treatment effect, we can

average up block-specific treatment effects (different
weights for different estimands)

run a regression on treatment and block indicators
(possibly with interactions)
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Randomized experiment:
friend or foe?
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Advantages of randomized experiments

* Unbiased estimate of the treatment effect
(assuming no additional complications)

 Fair (if oversubscribed/insufficient resources for all)

« Simpler (at least to analyze)

« Can reduce need for data collection

* More convincing evidence to funders, policy makers
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Disadvantages of randomized experiments

« Cost

* Administrative burden

 Ethical?

* Necessarily prospective

* Requires a higher level of buy-in from subjects and
practitioners

« Can trade-off “internal validity” for “external validity”

« “But | already know my program works!”
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Ethical arguments against randomization

Feels unfair to withhold from some people
Benefits don't necessarily go to the most needy

People receiving a treatment they deem to be
beneficial will eventually lose access to that

Do we have to keep the study going if we can tell
before the scheduled end of study that the treatment is
beneficial
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Ethical arguments in favor of randomization

Giving some things to some people may be better than
giving nothing to anyone
Strong evidence that might influence adoption of a program

Don't have resources for everyone to get the treatment it
could be the most ethical choice

You don't know if something is effective

Can stop the study if you find treatment is very effective
(but then lose the ability for looking at the impact of
long-term outcomes)
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Internal and external validity

All patients with the Internal
condition of interest validity

Sampling Intel’na|
and
Selection eXte rnal

SAMPLE

validity

Measurement and
confounding bias

l Chance l

> CONCLUSION

External
validity
(generalizability)
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What are my other options?
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Variations on traditional randomized
experiments
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Alternatives to traditional randomized experiments

Hold out groups (100% of folks in need get services,
everyone else randomized)

Waitlist controls designs (Those randomized to the
control group are guaranteed to receive the services
after a specified amount of time)

Randomized encouragement designs (Randomize
encouragement or incentives)

Randomized block designs (higher probability for those
In most need)
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Randomized encouragement designs: estimation

Suppose you randomize encouragement
- those not encouraged can still get the treatment
- those encouraged not forced to take up the tx

Cleanest estimation is for the effect of encouragement

Can also estimate the effect of the treatment, but need to
make additional assumptions (instrumental variables)
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WHOA. YOU'RE ONLY | EXPERIMENTED A LOT IN
30. GOT TO SAY YOU COLLEGE.

LOOK A LOT OLDER.

BREAK

A FEW
YEARS
EARLIER

GOD DAMN YOU, WH
WON'T YOU WORK.

opne inko Ru?':\,\rc om
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Randomized experiments:
oW\ Ignorability satisfied (with blocks, X)

Randomized experiment

Y(0), (1) L Z
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Randomized experiments:
onl!  Ignorability satisfied (with blocks, X)

Randomized experiment Randomized block experiment

X=x

Y(0), Y(1) L Z Y(0), (1) L Z@
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Observational study:
Ignorability ASSUMED conditional on covariates X

Observational studies

We hope our observational
study is like a complicated
randomized block experiment.

This requires measuring the
right set of confounders, X X=x

Y(0), (1) L Z| X
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Observational study:
Ignorability ASSUMED conditional on covariates X

Of fo.\‘\'. ) Observational studies

We hope our observational
study is like a complicated
randomized block experiment.

This requires measuring the
right set of confounders, X X=x

Y(0), (1) L Z| X
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Designh summary

Randomized (or natural) experiments

* great butrare

* may be limited to narrow questions or populations

* still challenging to understand when, why, and for whom
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Designh summary

Randomized (or natural) experiments

* great butrare

may be limited to narrow questions or populations
still challenging to understand when, why, and for whom

Observational studies and quasi-experiments

often necessary due to ethics, logistics, time, money....

often requires appropriately conditioning on many covariates
(proxies for potential outcomes) to satisfy ignorability (the more
covariates the stronger the parametric assumptions)
alternately we need to capitalize on particular data structures



Agenda
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Quasi-experimental designs and methods

Matching

Difference In Differences (DID)
Interrupted Time Series

Regression Discontinuity Designs(RDD)

Machine learning?
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MRLOVENSTEIN.COM

Quasi-experimental
designs and methods
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What happens in the absence of randomization?

Observations “self-select” into treatment groups

Treatment and control groups are likely to be different in
important ways (age, income, race, “motivation”, health)

If characteristics that differ across groups also predict
outcomes we can'’t distinguish whether differences in
outcomes are caused by the treatment or covariates.

Accordingly these are called confounding covariates

The bias caused by this self-selection is often referred to
as selection bias or confounding
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Design our observational study

e Design: Focus on approximating randomized trial
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Design our observational study

e Design: Focus on approximating randomized trial

Emulate design of randomized trials — no outcomes

Restructure data so treated and control units are similar

e How do we do this with many covariates?
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Propensity score: a useful one-number summary

e(X) = P(Z | X)

Conditional probability of treatment given X

e e.g., prob of treatment given age and education
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Propensity score: a useful one-number summary

e(X) = P(Z | X)

Conditional probability of treatment given X

e e.g., prob of treatment given age and education

Propensity score theorem

Z LY(0),Y(1)|e(X) <« ZLY(0),Y(1)|X
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Propensity score: a useful one-number summary

e(X) = P(Z | X)

Balancing score for X

If two groups of observations have similar values of e(X), they
should have similar distributions of X

Match/weight units based on e(X) — similarity wrt X
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Propensity score: a useful one-number summary

e(X) = P(Z | X)

Propensity score is known in RCTs; here we must estimate it

NO MAGIC -- still assume away unmeasured confounders

Z L Y(0),Y(1)| X
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"Simple" Template for Using Propensity Scores

Design phase: (without outcomes)

e Define treatment, select potential confounders

e Repeat until convergence:
e Estimate propensity score
e “Restructure” data set (matching/weighting)
e Check balance between treated and pseudo-control units

Analysis phase: (with outcomes)

e Estimate causal effects — difference in means, “regression,” ...
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Classic example: National Supported Work (NSW)

Randomized evaluation of NSW in 1970s

e Training program for job skills to disadvantaged workers
e Large, positive effect on wages

Constructed observational study combines

e the treatment group from NSW with
e a comparison groups from a separate survey

Can we recover the experimental estimate?
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Pre-treatment Data
(variables that could be collected across
both datasets)

* Worker demographics:
— Age
— Years of education

— Race/ethnicity, coded {Black, Hispanic, White}
* Prior earnings: in 1974, in 1975



Age

Years of Education

Black

Hispanic

White

Earnings 1974

Earnings 1975
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Raw Covariate Balance

0.0

0.2

Absolute (Standardized) Mean Differences

0.4

0.6

0.8

Sample
@® Unadjusted
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Raw Data: Prop. Score Balance
Unadjusted Sample
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Restructuring the data to make groups similar

Matching

— For each treated unit: find the control unit with closest
estimated propensity score

Weighting for the effect of the treatment on the treated

— Assign each treated unit weight 1

&%)

— Assign each control unit weight: 1 —28(X)




Proportion
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Prop. Score Matching: Prop. Score Balance
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Proportion
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Prop. Score Weighting: Prop. Score Balance

Unadjusted Sample Adjusted Sample
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Black
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Earnings 1974

Earnings 1975
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Raw Covariate Balance
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0.2

Absolute (Standardized) Mean Differences

0.4
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Prop. Score Matching: Covariate Balance
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Prop. Score Weighting: Covariate Balance

Age

Years of Education -

Black
Sample
Hispanic - @ Unadjusted
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Earnings 1975
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Estimated Treatment Effect By Method
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But wait, there’s more!

Propensity scores are conceptually useful, but we can often
do better in practice

e Find matches/weights that directly balance covariates

e (o beyond difference-in-means

e Adjust for covariates using a flexible model.... machine
learning!
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Quasi

experiments:

DID

ITS (etc)
RDD

“There's a flaw in your experimental design.
All the mice are scorpios.”
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outcome

Difference In
Differences

184
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Difference In Differences overview

DID implemented in scenarios in which

1) there are at least two groups, at least one of which
received the treatment

2) there are measurements of the outcome both before and
after potential treatment exposure/implementation for both
groups
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DID example: Litigation and bullying

RQ: "Does litigation related to sexual orientation—based
harassment and discrimination in schools reduce rates of
homophobic bullying?"

Context: =1.5 million students in 499 California high schools
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DID example: Litigation and bullying

RQ: "Does litigation related to sexual orientation—based
harassment and discrimination in schools reduce rates of
homophobic bullying?"

Treatment: ?
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DID example: Litigation and bullying

RQ: "Does litigation related to sexual orientation—based
harassment and discrimination in schools reduce rates of
homophobic bullying?"

Treatment: "litigation addressing alleged violations of the
rights of students who are (or are perceived to be) lesbian,
gay, bisexual, or transgender (LGBT) under laws prohibiting
harassment or discrimination in California schools after 2000"
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DID example: Litigation and bullying

RQ: "Does litigation related to sexual orientation—based
harassment and discrimination in schools reduce rates of
homophobic bullying?"

Treatment:
successful LGBT harrassment/discrimination litigation
unsuccessful LGBT harrassment/discrimination litigation
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DID example: Litigation and bullying

Litigation and bullying

RQ: "Does litigation related to sexual orientation—based
harassment and discrimination in schools reduce rates of
homophobic bullying?"

Outcome?
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DID example: Litigation and bullying

Litigation and bullying

RQ: "Does litigation related to sexual orientation—based
harassment and discrimination in schools reduce rates of
homophobic bullying?”

Homophobic bullying: "survey data on homophobic bullying from
1,448,778 California high school students in 499 schools."

15 consecutive waves of data from the California Healthy Kids
Survey (CHKS)...collected between the 2001- 2002 and 2015-2016
academic years.
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. Bullying example (illustrative)

bullying
incidents schools that experienced litigation

/

o

\

schools that did not experience litigation

Time O Time 1
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lHlustrative

bullying
incidents

e Y(0)]|Z=1

\. Y1) | Z=1

o \ P

schools that did not experience litigation

Time O Time 1
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lHlustrative

bullying

incidents what the outcome

would have been
without litigation

e Y(0)]|Z=1

\. Y1) | Z=1

o \ P

schools that did not experience litigation

Time O Time 1
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Difference in Differences: Bullying example (illustrative)

pbullying

ncidents what the outcome

would have been
without litigation

Y(0) | Z=1

Treatment

- effect estimate

Y(1) | Z=1

o

\

schools that did not experience litigation

Time O Time 1
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DID: estimation
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Difference in Differences: Estimation

(VY —(Th T8

ncidents schools that experienced litigation

"y

schools that did not experience litigation

Time O Time 1
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DID Estimation

If we have the individual data points we can estimate the
DID effect using the following regression model.

ElY|Z,T|=ag+ MZ; + 00T; + BZ;T;

Z. = exposure group (school that experienced litigation or
not)
T. = time period (bullying measured pre- or post-litigation)

200
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DID: assumptions

Parallel trends

The critical assumption for difference in difference
analysis is that the change in outcomes over time
for the control group represents the same change
that would have happened for the treatment
group if they hadn't been exposed to the treatment
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Difference in Differences: Parallel trends

what the outcome
would have been
without litigation
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Figure 2. Test of Parallel Trends Assumption Comparing Homophobic
Bullying in Case Schools With Control Schools
in the Years Prior to the Case

How can we try to
justify the Parallel
Trends
assumption?
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Results

Plaintiff secured a remedy

ROR, 0.96; 95% Cl, 0.85-1.08
A

ROR, 0.77; 95% Cl, 0.68-0.86

Before During After case
case case resolution

Time period
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Results

Defendant avoided adverse legal consequences

ROR, 0.90; 95% Cl, 0.61-1.32
A

ROR, 1.27; 95% Cl, 0.88-1.83

Before During After case
case case resolution

Time period
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Results

Plaintiff secured a remedy

| ROR, 0.96; 95% CI, 0.85-1.08

v

ROR, 0.77; 95% Cl, 0.68-0.86

I
Before During After case
case case resolution

Time period

Defendant avoided adverse legal consequences

| ROR, 0.90; 95% Cl, 0.61-1.32

ROR, 1.27; 95% Cl, 0.88-1.83

I
Before During After case
case case resolution

Time period
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DID features

1) Requires a comparison group which may help to create
similarity across groups (though may not)

2) Treatment will likely be manipulable but may not be as
"well-defined" as you'd like

3) Does enforce temporal ordering of treatment and
outcomes (not necessarily covariates depending on analysis)

4) Makes a VERY STRONG assumption (parallel trends)
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Interrupted Time Series
and friends
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Interrupted Time Series
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Typical strategy to
construct a trajectory of
counterfactuals

1) Model the
pre-intervention trend

2) Extrapolate that model
beyond the intervention
timeline as displayed by
the dotted blue line.

3) Estimate the treatment
effect as the difference
between the observed
outcome for the treated
and the corresponding
point on the projected
trend line
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ITS versus DID

Downside of ITS is that we don’t really know how the trajectory in
time might be evolving if the “treatment” (e.g. change in policy) had
never occurred.

DID on the other hand uses a comparison group to make an
educated guess at that trajectory.
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Difference In Differences
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Difference In Differences

Pre-treatment
measurement
of outcome for

treatment group \

Pre-treatment measurement
of outcome for control group

Counterfactual
Y(0) outcome for
treated at time t,

bserved treatment
outcome, Y(1), at time t,

O

Observed Y(0)
outcome at time t,
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CITS (best of both worlds?)

Often framed as a more complicated version of DID, but there are important
distinctions.

In CITS, the counterfactual is constructed with these steps:

1) fit linear models to the control outcome in each of the pre- and
post-intervention periods,

2) compute the pre- to post-period changes in the intercepts and slopes,

3) fit a linear model to the treated outcomes in the pre-intervention period, and
4) assume the comparison group’s intercept and slope changes computed in
step (2) would have held in the treated group in the absence of intervention.

Material augmented by : https://diff.healthpolicydatascience.org/#cits
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Counterfactual C I TS
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Pre-treatment
measurements
of outcome for
treatment group

Pre-treatment measurements

of outcome for control group - **
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Counterfactual

. . . Y(0) outcome for
Comparative Interrupted Time Series | . ied ot time',

bserved treatment
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Observed Y(0)
outcome at time t,
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CITS

Control group doesn't
change slope or
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intervention time
point ... soO
counterfactual
mimics this when
extrapolating the
treatment line
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Counterfactual C I TS

. . . Y(0) outcome for
Comparative Interrupted Time Series | . ied ot time',

This is a very different
trajectory for the

Pre treatment control group

re-treatmen

measurements . bserved treatment would the new Y(O)
e outcome, Y(1), attime t,

of outcome for > look like?

treatment group .

o
=
o
O
-+
-]
o

Observed Y(0)

Pre-treatment measurements outcome at tifne 't4

of outcome for control group




Presentation from the CDUHR Methods Core 3/26/2024.
DO NOT DISTRIBUTE OR POST TO OTHER WEBSITES WITHOUT PERMISSION FROM DR. JENNIFER HILL.

Counterfactual C I TS

Y(0) outcome for

Comparative Interrupted Time Series | . ied ot time',

This is a very different
trajectory for the

control group but the

Pre-treatment bservéd freatment )
measurements outcome, Y(1), at time t, story remains the

of outcome for \“ e same.
treatment group ’

o
=
o
O
-+
-]
o

Control group doesn't

change slope or
i Observed Y(0) | ntercept. at the
re-treatment measurements outcome at tifme t Intervention time
of outcome for control group 4 .

point .... so

counterfactual
mimics this when
extrapolating the
treatment line




Presentation from the CDUHR Methods Core 3/26/2024.
DO NOT DISTRIBUTE OR POST TO OTHER WEBSITES WITHOUT PERMISSION FROM DR. JENNIFER HILL.

ITS, DID, CITS

Each capitalizes on (strong, untestable) assumptions about
similarities in trajectories over time.

Each is sensitive to departures from the assumptions
Generally preferable to have a comparison group (DID and

CITS). The more similar that group is to the treatment group
at the outset the more confidence we typically have.
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Regression Discontinuity
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Regression Discontinuity Design

In the Presence of Treatment

QOutcome
(student scores)

Cut-pomnt
Rating (student poverty)
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Regression Discontinuity Design

Arbitrary cutoffs are common in practice

e Test score cutoff for winning a college scholarship

e Birth weight cutoff for sending newborn to ICU

e Program officers assessment of risk for housing program

e Income threshold for means-tested social supports

Advantages of RDD

e \We know the assignment rule (which means we know the
true confounders)

But many statistical challenges
e No overlap
e Need to estimate impacts at a boundary
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Regression Discontinuity Design

All deaths
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Source: World Bank: 16-Technical-Track-Regression-Discontinuity.pdf
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90

outcome

80

70

Observed outcome data by running variable

60

E[Y(1)-Y(0) | X=X*] — teamen

Control

Let x* denote the threshold (cutoff)

65 70 75
running variable
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The RD estimator

Most popular estimators use the following
models fit to data in a selected bandwidth

EY | Z,X| =00+ 1 X +7Z + X2

EY|Z,X] = y+mX+7(X)+712
+ 13 XZ +7(X%)*Z

where, for simplicity, we let X* = X - x*

Y = outcome
7, = treatment assignment
X = running variable; X* = cutoff;
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Regression Discontinuity Design: Ethics

Regression discontinuity is sometimes proposed as a more
ethical alternative to a randomized experiment

If the score that determines the cutoff / treatment eligibility is
a measure of "need" then it might help ensure that the most
needy receive the treatment/program

Sometimes leads to unethical behavior at the threshold
(artificially inflating test scores or deflating income to allow
someone to be eligible)
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Vell of Darkness

Using causal inference to assess discrimination
in traffic stops
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Understanding the causal effect of discrimination

Why is it hard to assess the impact of discrimination?
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RDD to understand the impact of discrimination

Consider the following research question....

Is there a causal effect of race on the probability that a driver
Is pulled over by the police?
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Idea 1

Compare the percent of people pulled over for traffic stops across
racial groups.

Problem?
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Lo [-Y-W-

In essence then it would be nice to compare to a situation where
the officers making the stops had no information about race...

when would this happen?
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Lo [-Y-W-

In essence then it would be nice to compare to a situation where
the officers making the stops had no information about race...

when would this happen?

How about when it's too dark to be able observe race clearly?
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Lo [-Y-W-

How about comparing stops by racial group at two different times of
day:

-When it’s light enough for the officer to see the driver’s race

-When it's dark enough to mask the driver’s race



Presentation from the CDUHR Methods Core 3/26/2024.
DO NOT DISTRIBUTE OR POST TO OTHER WEBSITES WITHOUT PERMISSION FROM DR. JENNIFER HILL.

Stops occurring in three short time windows in a single state, Texas
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BIG IDEA: Daylight savings!

Daylight savings in the US creates a situation where if we make
comparisons at the same time of day on the day (week) before and
after the time change one one day it will be light and on the next it

will be dark.
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Idea 3

How about we compare stop races by group at the same time of
day but across days that are separated by the time change that

occurs due to daylight savings time?
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Idea 3

How about we compare stop races by group at the same time of
day but across days that are separated by the time change that

occurs due to daylight savings time?

Sounds good!
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Model
1

Pr(black|t, g, p,d,s, c) = logit™

(asxsxd+a.xcxd+ B" xnsg(t) + 7[g] + 5[p])

models the probability that a stopped driver is black at a given point
in time, t, location, g, and period, p (start or end of daylight
savings). d denotes after dusk or before sunset. ¢ denotes city
police versus state patrol, s. ns,(t) is a spline.
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Model and results
1

Pr(black|t, g, p,d,s, c) = logit™

(asxsxd+a.xcxd+ B" xnsg(t) + 7[g] + 5[p])

The representation of black drivers among
_ those stopped decreases strongly when
@, __"033 (039, -.027) o dicers have a more difficult time

. =-039 (-.045, -.022) assessing the race of the driver.

This is powerful evidence of discrimination!
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We're just starting to plan
our evaluation. Whlc_h All of them.
methods should we consider?
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Causal inference is important but tricky...

LEARN MORE!!
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thinkCausal
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Thank You!

T USED T0 THINK THEN I TOOK A | | SOUNDS LIKE THE
CORRELATION MPUED STAns:_r»cs CLASS. cmss HELPED.
CAVUSATION. NOW I DONT. WELL, MAYBE.

A1

lennifer.hill@nyu.edu
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